Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates.
نویسندگان
چکیده
Calorie restriction (CR) increases longevity and retards the development of many chronic diseases, but the underlying metabolic signals are poorly understood. Increased fatty acid (FA) oxidation and reduced FA synthesis have been hypothesized to be important metabolic adaptations to CR. However, at metabolic steady state, FA oxidation must match FA intake plus synthesis; moreover, FA intake is low, not high, during CR. Therefore, it is not clear how FA dynamics are altered during CR. Accordingly, we measured food intake patterns, whole body fuel selection, endogenous FA synthesis, and gene expression in mice on CR. Within 2 days of CR being started, a shift to a cyclic, diurnal pattern of whole body FA metabolism occurred, with an initial phase of elevated endogenous FA synthesis [respiratory exchange ratio (RER) >1.10, lasting 4-6 h after food provision], followed by a prolonged phase of FA oxidation (RER = 0.70, lasting 18-20 h). CR mice oxidized four times as much fat per day as ad libitum (AL)-fed controls (367 +/- 19 vs. 97 +/- 14 mg/day, P < 0.001) despite reduced energy intake from fat. This increase in FA oxidation was balanced by a threefold increase in adipose tissue FA synthesis compared with AL. Expression of FA synthase and acetyl-CoA carboxylase mRNA were increased in adipose and liver in a time-dependent manner. We conclude that CR induces a surprising metabolic pattern characterized by periods of elevated FA synthesis alternating with periods of FA oxidation disproportionate to dietary FA intake. This pattern may have implications for oxidative damage and disease risk.
منابع مشابه
High-fat hypocaloric diet modifies carbohydrate utilization of obese rats during weight loss.
The effects of fat content in the hypocaloric diet on whole body glucose oxidation and adipocyte glucose transport were investigated in two animal-feeding experiments. Diet-induced obese rats were food restricted to 75% of their previous energy intakes with either a high (45% by calorie) or a low (12% by calorie) corn oil diet for 9 wk (experiment 1) or 10 days (experiment 2). The losses of bod...
متن کاملShort-term weight loss and hepatic triglyceride reduction: evidence of a metabolic advantage with dietary carbohydrate restriction.
BACKGROUND Individuals with nonalcoholic fatty liver disease (NAFLD) have excess intrahepatic triglycerides. This is due, in part, to increased hepatic synthesis of fat from carbohydrates via lipogenesis. Although weight loss is currently recommended to treat NAFLD, little attention has been given to dietary carbohydrate restriction. OBJECTIVE The aim of this study was to determine the effect...
متن کاملParadoxical Coupling of Triglyceride Synthesis and Fatty Acid Oxidation in Skeletal Muscle Overexpressing DGAT1
OBJECTIVE Transgenic expression of diacylglycerol acyltransferase-1 (DGAT1) in skeletal muscle leads to protection against fat-induced insulin resistance despite accumulation of intramuscular triglyceride, a phenomenon similar to what is known as the "athlete paradox." The primary objective of this study is to determine how DGAT1 affects muscle fatty acid oxidation in relation to whole-body ene...
متن کاملThe Effect of Low Volume High Intensity Interval Training on Sarcolemmal Content of Fatty Acid Transport Proteins (FAT/CD36 and FABPpm) in Young Men
High-intensity interval training (HIT) induces skeletal muscle metabolic and performance adaptations that resemble traditional endurance training despite a low total exercise volume. On the other hand, fatty acid oxidation is increases in skeletal muscle with endurance training. This process is regulated in several sites, including the transport of fatty acids across the plasma membrane. The...
متن کاملDietary palmitate and linoleate oxidations, oxidative stress, and DNA damage differ according to season in mouse lemurs exposed to a chronic food deprivation.
This study investigated the extent to which the increase in torpor expression in the grey mouse lemur, due to graded food restriction, is modulated by a trade-off between a whole body sparing of polyunsaturated dietary fatty acids and the related oxidative stress generated during daily torpor. We measured changes in torpor frequency, total energy expenditure (TEE), linoleate (polyunsaturated fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 298 1 شماره
صفحات -
تاریخ انتشار 2010